The Material Point Method for the Physics-Based Simulation of Solids and Fluids

نویسنده

  • Chenfanfu Jiang
چکیده

OF THE DISSERTATION The Material Point Method for the Physics-Based Simulation of Solids and Fluids by Chenfanfu Jiang Doctor of Philosophy in Computer Science University of California, Los Angeles, 2015 Professor Demetri Terzopoulos, Co-chair Professor Joseph M. Teran, Co-chair Simulating fluids and solid materials undergoing large deformation remains an important and challenging problem in Computer Graphics. The dynamics of these materials usually involve dramatic topological changes and therefore require sophisticated numerical approaches to achieve sufficient accuracy and visual realism. This dissertation focuses on the Material Point Method (MPM) for simulating solids and fluids for use in computer animation, and it makes four major contributions: First, we introduce new MPM for simulating viscoelastic fluids, foams and sponges. We design our discretization from the upper convected derivative terms in the evolution of the left Cauchy-Green elastic strain tensor. We combine this with an Oldroyd-B model for plastic flow in a complex viscoelastic fluid. While the Oldroyd-B model is traditionally used for viscoelastic fluids, we show that its interpretation as a plastic flow naturally allows us to simulate a wide range of complex material behaviors. In order to do this, we provide a modification to the traditional Oldroyd-B model that guarantees volume preserving plastic flows. Our plasticity model is remarkably simple (foregoing the need for the singular value decomposition (SVD) of stresses or strains). We show that implicit time stepping can be achieved in a manner that enables high resolution

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High-Velocity Impact Simulation using SPH-Projection Method

In this paper, a new smoothed particle hydrodynamics (SPH) algorithm for simulation of elastic-plastic deformation of solids was proposed. The key point was that materials under highvelocity impact (HVI) behave like fluids. This led to propose a method which was similar to the socalled SPH-projection method, in which the momentum equations are solved as the governing equations. The method consi...

متن کامل

Three-dimensional numerical simulation of temperature and flow fields in a Czochralski growth of germanium

For a Czochralski growth of Ge crystal, thermal fields have been analysed numerically using the three-dimensional finite volume method (FLUENT package). The arrangement used in a real Czochralski crystal growth lab included a graphite crucible, heat shield, heating device, thermal insulation and chamber including two gas outlets. We have considered two cases for calculations, which are configur...

متن کامل

Determination of the Energy Windows for the Triple Energy Window Scatter Correction Method in Gadolinium-159 Single Photon Emission Computed Tomography Using Monte Carlo Simulation

Introduction: In radionuclide imaging, object scatter is one of the major factors leading to image quality degradation. Therefore, the correction of scattered photons might have a great impact on improving the image quality. Regarding this, the present study aimed to determine the main and sub-energy windows for triple energy window (TEW) scatter correction method usin...

متن کامل

A method for range calculation of proton in liquid water: Validation study using Monte Carlo method and NIST data

Introduction: The main advantage of using ion beams over photons in radiotherapy is due to their inverse depth-dose profiles, allowing higher doses to tumors, while better sparing normal tissues. When calculating dose distributions with ion beams, one crucial point is the uncertainty of the Bragg-peak range. Recently great effort is devoted to enhance the accuracy of the comput...

متن کامل

Gamma Knife Simulation Using the MCNP4C Code and the Zubal Phantom and Comparison with Experimental Data

Introduction: Gamma Knife is an instrument specially designed for treating brain disorders. In Gamma Knife, there are 201 narrow beams of cobalt-60 sources that intersect at an isocenter point to treat brain tumors. The tumor is placed at the isocenter and is treated by the emitted gamma rays. Therefore, there is a high dose at this point and a low dose is delivered to the normal tissue surroun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015